Preview

Fine Chemical Technologies

Advanced search

Chemical sensors based on photonic colloidal crystals

https://doi.org/10.32362/2410-6593-2023-18-4-392-407

Abstract

Objectives. The paper analyzes the results of research into the formation of photonic crystal structures from polymer microspheres and the mechanisms of spectral shifts during selective reflection of non-monochromatic incident radiation from them in the visible and infrared light, as well as the use of polymer microspheres as sensors for detecting chemical substances having similar structures.

Results. Research carried out at the Ya.K. Syrkin Department of Physical Chemistry in the Institute of Fine Chemical Technologies of the RTU MIREA is presented. Issues related to the detection of substances with similar chemical structure using sensors based on photonic crystals made of polystyrene microspheres 160–300 nm in size, are considered. Spectral shifts of the reflected radiation from the crystal surface are registered in the visible spectrum when substances in the liquid or gas phase are detected by the crystal surface.

Conclusions. The method of electrophoretic deposition of colloidal particles in the form of polymeric microspheres on conducting surfaces can be used to create ordered structures over large areas. However, the detection of individual compounds by the optical method is impossible without controlling the kinetics of spectral shifts of reflected radiation from the surface of photonic colloidal crystals. The spectral characteristics of such radiation are directly related to the particle sizes that determine the period of the crystal lattice. The diffusion of chemical substances into a photonic crystal, which results in a swelling of the particles forming it and a shift in the spectrum of reflected radiation, is determined by a change in the period of the crystal lattice due to a change in the size of these particles A kinetic model of swelling polymer microspheres, which describes the diffusion of substances into porous polymer particles, is proposed. An excess amount of substance deposited on the surface of a photonic crystal above the limit is shown to lead to its degradation, which is manifested in the “fading” of the crystal surface and the concomitant disappearance of narrow peaks of reflected radiation. 

About the Authors

A. A. Kozlov
MIREA – Russian Technological University (M.B. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Andrei A. Kozlov, Cand. Sci. (Eng.), Associate Professor, Ya.K. Syrkin Department of Physical Chemistry

86, Vernadskogo pr., Moscow, 119571



A. S. Aksenov
MIREA – Russian Technological University (M.B. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Anton S. Aksenov, Postgraduate Student, Ya.K. Syrkin Department of Physical Chemistry

86, Vernadskogo pr., Moscow, 119571



V. A. Dvoretsky
MIREA – Russian Technological University (M.B. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Vasilii A. Dvoretsky, Master Student, Ya.K. Syrkin Department of Physical Chemistry

86, Vernadskogo pr., Moscow, 119571



V. R. Flid
MIREA – Russian Technological University (M.B. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Vitaly R. Flid, Dr. Sci. (Chem.), Professor, Head of the Ya.K. Syrkin Department of Physical Chemistry

86, Vernadskogo pr., Moscow, 119571



References

1. Flid V.R., Leonteva S.V., Kaliya O.L., Durakov S.A. Method for carrying out the process of reversible isomerisation of norbornadiene in a quadricyclean: RF Pat. RU 2618527 C1. Publ. 04.05.2017 (in Russ.).

2. Kuznetsova N.A., Kaliya O.L., Leont’eva S.V., Manulik O.S., Negrimovskii V.M., Flid V.R., Shamsie R.S., Yuzhakova O.A., Yashtulov N.A. Catalyst and method for valence isomerisation of quadricyclane in norbornadiene: RF Pat. RU 2470030 C1. Publ. 20.11.2012 (in Russ.).

3. Shapiro B.I. Nanoarchitecture of Aggregates of Polymethine Dyes. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2019;14(2):5–14 (in Russ.). https://doi.org/10.32362/2410-6593-2019-14-2-5-14

4. Shapiro B.I., Sokolova L.S., Kuz’min V.A., Tolmachev A.I., Slominskii Y.L., Briks Y.L. Effect of meso-alkyl substituents in the polymethine chain of thiacarbocyanines on the morphology of dye aggregates. Nanotechnol. Russia. 2012;7(5–6):205–212. https://doi.org/10.1134/S1995078012030159 [Original Russian Text: Shapiro B.I., Sokolova L.S., Kuz’min V.A., Tolmachev A.I., Slominskii Y.L., Briks Y.L. Effect of meso-alkyl substituents in polymethine chain of thiacarbocyanines on the morphology of dye aggregates. Rossiiskie Nanotekhnologii. 2012;7(5–6):28–33 (in Russ.).]

5. Shapiro B.I., Nekrasov A.D., Krivobok V.S., Manulik E.V., Lebedev V.S. Synthesis and Photophysical Properties of Multichromic Nanocrystals of Polymethine Dyes. Nanotechnol. Russia. 2018;13(5–6):281–289. https://doi.org/10.1134/S1995078018030151 [Original Russian Text: Shapiro B.I., Nekrasov A.D., Krivobok V.S., Manulik E.V., Lebedev V.S. Synthesis and Photophysical Properties of Multichromic Nanocrystals of Polymethine Dyes. Rossiiskie Nanotekhnologii. 2018;13(5–6):67–75 (in Russ.).]

6. Shapiro B.I., Nekrasov A.D., Manulik E.V., Krivobok V.S., Lebedev V.S. Optical and photoelectric properties of multichromic cyanine dye J-aggregates. Quantum Electron. 2018;48(9):856–866. https://doi.org/10.1070/QEL16758 [Original Russian Text: Shapiro B.I., Nekrasov A.D., Manulik E.V., Krivobok V.S., Lebedev V.S. Optical and photoelectric properties of multichromic cyanine dye J-aggregates. Kvantovaya Elektronika. 2018;48(9):856–866 (in Russ.).]

7. Shapiro B.I., Nekrasov A.D., Krivobok V.S., Lebedev V.S. Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes. Opt. Express. 2018;26(23):30324–30337. https://doi.org/10.1364/OE.26.030324

8. Bolshakov E.S., Schemelev I.S., Ivanov A.V., Kozlov A.A. Photonic Crystals and Their Analogues as Tools for Chemical Analysis. J. Anal. Chem. 2022;77(10):1215–1235. http://doi.org/10.1134/S1061934822100033 [Original Russian Text: Bolshakov E.S., Schemelev I.S., Ivanov A.V., Kozlov A.A. Photonic Crystals and Their Analogues as Tools for Chemical Analysis. Zhurnal Analiticheskoi Khimii. 2022;77(10):875–898 (in Russ.). https://doi.org/10.31857/S0044450222100036 ]

9. Ivanov A.V., Bol’shakov E.S., Apyari V.V., Kozlov A.A., Gorbunova M.V., Abdullaev S.D. Analytical Response of Sensor Arrays Based on Photonic Crystals: Measurements of Diffuse Reflectance. J. Anal. Chem. 2019;74(2):198–204. http://dx.doi.org/10.1134/S1061934819020072 [Original Russian Text: Ivanov A.V., Bol’shakov E.S., Apyari V.V., Kozlov A.A., Gorbunova M.V., Abdullaev S.D. Analytical Response of Sensor Arrays Based on Photonic Crystals: Measurements of Diffuse Reflectance. J. Anal. Chem. 2019;74(2):154–160 (in Russ.). https://doi.org/10.1134/S0044450219020075 ]

10. Kozlov A.A., Aksenov A.S., Bolshakov E.S., Ivanov A.V., Flid V.R. Colloidal photonic crystals with controlled morphology. Russ. Chem. Bull. 2022;71:2037–2051. http://doi.org/10.1007/s11172-022-3627-7 [Original Russian Text: Kozlov A.A., Aksenov A.S., Bolshakov E.S., Ivanov A.V., Flid V.R. Colloidal photonic crystals with controlled morphology. Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2022;(10):2037–2051 (in Russ.).]

11. Ivanov A.V., Kozlov A.A., Koreshkova A.N., Abdullaev S.D., Fedorova I.A. Reflectance spectra of organic matrices on the basis of photonic crystals formed of polystyrene microspheres with a particle size of 230 nm. Moscow Univ. Chem. Bull. 2017;72(1):19–23. http://dx.doi.org/10.3103/S0027131417010060

12. Bol’shakov E.S., Ivanov A.V., Garmash A.V., Samokhin A.S., Kozlov A.A., Zolotov Y.A. Integrated Approach to Monitoring Volatile Organic Compounds by Photonic-Crystal Sensor Matrices. Russ. J. Inorg. Chem. 2021;66(2):217–224. https://doi.org/10.1134/S0036023621020030 [Original Russian Text: Bol’shakov E.S., Ivanov A.V., Garmash A.V., Samokhin A.S., Kozlov A.A., Zolotov Y.A. Integrated Approach to Monitoring Volatile Organic Compounds by Photonic-Crystal Sensor Matrices. Zhurnal Neorganicheskoi Khimii. 2021;66(2):220–228 (in Russ.). https://doi.org/10.31857/S0044457X21020033 ]

13. Yamanovskaya I.A., Gerasimova T.V., Agafonov A.V. Using Polymer-Colloid Complexes for Obtaining Mesoporous Aluminium Oxide by the Template Sol-Gel Method. Russ. J. Inorg. Chem. 2018;63(9):1125–1130. https://doi.org/10.1134/S0036023618090218 [Original Russian Text: Yamanovskaya I.A., Gerasimova T.V., Agafonov A.V. Using Polymer-Colloid Complexes for Obtaining Mesoporous Aluminium Oxide by the Template Sol-Gel Method. Zhurnal Neorganicheskoi Khimii. 2018;63(9):1096–1102 (in Russ.). https://doi.org/10.1134/S0044457X18090210 ]

14. Bol’shakov E.S., Ivanov A.V., Kozlov A.A., Abdullaev S.D. Photonic Crystal Sensors for Detecting Vapors of Benzene, Toluene, and o-Xylene. Russ. J. Phys. Chem. A. 2018;92(8):1530–1534. https://doi.org/10.1134/S0036024418080083 [Original Russian Text: Bol’shakov E.S., Ivanov A.V., Kozlov A.A., Abdullaev S.D. Photonic Crystal Sensors for Detecting Vapors of Benzene, Toluene, and o-Xylene. Zhurnal Fizicheskoi Khimii. 2018;92(8):1283–1288 (in Russ.). https://doi.org/10.7868/S0044453718080137 ]

15. Kozlov A.A., Abdullaev S.D., Aksenov A.S., Ivanov A.V., Semina Yu.A. Irreversible destruction of reflected radiation from the surface of photonic crystal. Journal of International Scientific Publications: Materials, Methods and Technologies. 2018;12:64–71. URL: https://www.scientific-publications.net/en/article/1001683/

16. Ishii H., Kuwasaki N., Nagao D., Konno M. Environmentally adaptable pathway to emulsion polymerization for monodisperse polymer nanoparticle synthesis. Polymer (Guildf). 2015;77(23):64–69. https://doi.org/10.1016/j.polymer.2015.09.002

17. Tran G.T.H., Koike M., Uchikoshi T., Fudouzi H. Fabrication of polystyrene colloidal crystal film by electrophoretic deposition. Adv. Powder Technol. 2020;31(8):3085–3092. https://doi.org/10.1016/j.apt.2020.05.029

18. Rakers S., Chi L.F., Fuchs H. Influence of the Evaporation Rate on the Packing Order of Polydisperse Latex Monofilms. Langmuir. 1997;13(26):7121–7124. https://doi.org/10.1021/la970757c

19. Dimitrov A.S., Nagayama K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces. Langmuir. 1996;12(5):1303–1311. https://doi.org/10.1021/la9502251

20. van Blaaderen A., Ruel R., Wiltzius P. Template-directed colloidal crystallization. Nature. 1997;385(6614):321–324. https://doi.org/10.1038/385321a0

21. Mayoral R., Requena J., Moya J.S., López C., Cintas A., Miguez H., Meseguer F., Vázquez L., Holgado M., Blanco Á. 3D Long-range ordering in ein SiO2 submicrometersphere sintered superstructure. Adv. Mater. 1997;9(3):257–260. https://doi.org/10.1002/adma.19970090318

22. Gu Z-Z., Fujishima A., Sato O. Fabrication of HighQuality Opal Films with Controllable Thickness. Chem. Mater. 2002;14(2):760–765. https://doi.org/10.1021/cm0108435

23. Jiang P., Bertone J.F., Hwang K.S., Colvin V.L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 1999;11(8):2132–2140. https://doi.org/10.1021/cm990080

24. Tran G.T.H., Koike M., Uchikoshi T., Fudouzi H. Rapid Growth of Colloidal Crystal Films from the Concentrated Aqueous Ethanol Suspension. Langmuir. 2020;36(36):10683–10689. https://doi.org/10.1021/acs.langmuir.0c01048

25. Ferreira J.A., Pena G., Romanazzi G. Anomalous diffusion in porous media. Appl. Math. Model. 2016;40(3):1850–1862. https://doi.org/10.1016/j.apm.2015.09.034

26. Abdullaev S.D., Kozlov A.A., Flid V.R., Gritskova I.A. Synthesis and properties of the ordered structures of polymer microspheres. Russ. Chem. Bull. 2016;65(3):756–758. https://doi.org/10.1007/s11172-016-1369-0 [Original Russian Text: Abdullaev S.D., Kozlov A.A., Flid V.R., Gritskova I.A. Synthesis and properties of the ordered structures of polymer microspheres. Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2016;65(3):756–758 (in Russ.).]

27. Kozlov A.A., Buryakov A.M., Dvoretskii V.A., Khusyainov D.I. Terahertz detectors for the defects analysis in photonic crystals from polymeric microspheres. In: Proc. XI International Scientific Conference “Kinetics and Mechanism of Crystallization. Crystallization and New Generation Materials.” Ivanovo, Russia. 2021. P. 226 (in Russ.).

28. Mastilovic S. Some sigmoid and reverse-sigmoid response patterns emerging from high-power loading of solids. Theor. Appl. Mech. 2018;45(1):95–119. https://doi.org/10.2298/TAM171203007M

29. Bekman I.N. Matematika diffuzii (Mathematics of Diffusion). Moscow: OntoPrint; 2016. 400 p. (in Russ.). 30. Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000;339(1):1–77. https://doi.org/10.1016/S0370-1573(00)00070-3

30. Arkhincheev V., Nomoev A. About nonlinear drift velocity at random walk by Levy flight: analytical solution and numerical simulations. Physica A: Statistical Mechanics and its Applications. 1999;269(2–4):293–298. https://doi.org/10.1016/S0378-4371(99)00113-2

31. Huang F., Liu F. The time fractional diffusion equation and the advection-dispersion equation. ANZIAM J. 2005;46(3):317–330. https://doi.org/10.1017/S1446181100008282

32. del-Castillo-Negrete D., Carreras B.A., Lynch V.E. Front Dynamics in Reaction-Diffusion Systems with Levy Flights: A Fractional Diffusion Approach. Phys. Rev. Lett. 2003;91(1):018302. https://doi.org/10.1103/PhysRevLett.91.018302

33. O’Shaughnessy B., Procaccia I. Diffusion on fractals. Phys. Rev. A. 1985;32(5):3073–3083. https://doi.org/10.1103/PhysRevA.32.3073

34. Ali A.I., Kalim M., Khan A. Solution of Fractional Partial Differential Equations Using Fractional Power Series Method. Int. J. Differ. Equ. 2021;2021(Article ID 6385799):17 pages. https://doi.org/10.1155/2021/6385799

35. Volynskii A.L., Yarysheva L.M., Bakeev N.F. Visualization of deformation-induced structural rearrangements in amorphous polymers. Polym. Sci. Ser. A. 2011;53(10):871–898. https://doi.org/10.1134/S0965545X11100129 [Original Russian Text: Volynskii A.L., Yarysheva L.M., Bakeev N.F. Visualization of deformation-induced structural rearrangements in amorphous polymers. Vysokomolekulyarnye Soedineniya. Ser. A. 2011;53(10):1683–1713 (in Russ.).]


Supplementary files

1. Shift of the selectively reflected radiation from the surface of a photonic crystal during treatment with n-octane (a) and the corresponding normalized reflection spectra (b) in dynamics.
Subject
Type Исследовательские инструменты
View (103KB)    
Indexing metadata ▾
  • The method of electrophoretic deposition of colloidal particles in the form of polymeric microspheres on conducting surfaces can be used to create ordered structures over large areas.
  • A kinetic model of swelling polymer microspheres, which describes the diffusion of substances into porous polymer particles, is proposed.
  • An excess amount of substance deposited on the surface of a photonic crystal above the limit is shown to lead to its degradation, which is manifested in the “fading” of the crystal surface and the concomitant disappearance of narrow peaks of reflected radiation.

Review

For citations:


Kozlov A.A., Aksenov A.S., Dvoretsky V.A., Flid V.R. Chemical sensors based on photonic colloidal crystals. Fine Chemical Technologies. 2023;18(4):392-407. https://doi.org/10.32362/2410-6593-2023-18-4-392-407

Views: 354


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)