Preview

Fine Chemical Technologies

Advanced search

Thiol-dependent mechanisms of selenium-containing preparations and thiolylfluanide effect on electrolytes leaching and peroxidase activity in Zea mays L.

https://doi.org/10.32362/2410-6593-2022-17-5-394-409

Abstract

Objectives. While organic and inorganic derivatives of selenium like thiol poisons are known to activate enzymes in cells of different organisms, the mechanism of enzyme activity induction is poorly studied. Therefore, the aim of the study was to investigate the effect of selenium compounds on peroxidase activity induction in maize tissues.
Methods. Mechanism of sulfhydryl groups blocking in selenium derivatives was studied on maize in comparison with fungicide tolylfluanid—a typical thiol poison. Electrolytes leakage was determined using conductometry and capillary electrophoresis, protein fractions—by the Ermakov–Durinina method, protein concentration—according to Bradford protein essay, and peroxidase activity—by the Boyarkin method.
Results. Diacetophenolylselenide (DAPS-25) was shown to react with SH-groups similarly with tolylfluanid fungicide. DAPS-25 increased K+ and leakage by 58 and 14 times, while appropriate increases for tolylfluanid were 4.4 and 1.5 times as compared to control. Increased total protein content—especially albumins—was due to electrolyte leakage from maize cells. DAPS-25 increased albumins concentration by 2.4–4.5 times, and tolylfluanid application by 2 times. Similar increase of peroxidase activity in maize roots and sprouts as a result of DAPS-25 (by 63% and 112%) and tolylfluanid (by 73% and 63%) application indicates close mechanism of their effect. Under DAPS-25 loading L-cysteine decreases peroxidase activity, which records the removal of SH-groups blockage. A less intensive effect was registered for sodium selenite and L-selenocystin, also capable of reacting with SH-groups. L-cysteine supplementation to DAPS-25 solution decreases selenium concentration in maize, indicating the decrease of selenium bioavailability.
Conclusions. The results indicated that selenium containing compounds react with SH-groups of maize cells increasing electrolytes leakage, protein content and especially albumins resulting in the increase of peroxidase activity.

About the Authors

P. A. Poluboyarinov
Penza State University, Penza
Russian Federation

Pavel A. Poluboyarinov, Cand. Sci. (Agricul.), Associate Professor, Department of General and Clinical Pharmacology

40, Krasnaya ul., Penza, 440026

Scopus Author ID 55913331500

RSCI SPIN-code 1855-6069



N. V. Shchetinina
Penza State University
Russian Federation

Natalia V. Shchetinina, Cand. Sci. (Biol.), Associate Professor, Department of Human Physiology

40, Krasnaya ul., Penza, 440026

Scopus Author ID 6603851588

RSCI SPIN-code 1027-6691



I. Ya. Moiseeva
Penza State University
Russian Federation

Inessa Ya. Moiseeva, Dr. Sci. (Med.), Dean of the Faculty of Medicine

40, Krasnaya ul., Penza, 440026

Scopus Author ID 7004249589

RSCI SPIN-code 9607-0306



N. I. Mikulyak
Penza State University
Russian Federation

Nadezhda I. Mikulyak, Dr. Sci. (Med.), Head of the Department of Human Physiology

40, Krasnaya ul., Penza, 440026

Scopus Author ID 55904922500

ResearcherID S-7843-2016

RSCI SPIN-code 5278-7302



N. A. Golubkina
Federal Scientific Center of Vegetable Production, VNIISSOK
Russian Federation

Nadezhda A. Golubkina, Dr. Sci. (Agricul.), Chief Researcher, Laboratory and Analytical Center

14, Selektsionnaya ul., VNIISSOK, Odintsovo urban district, Moscow oblast, 143080

Scopus Author ID 7004449622

ResearcherID AAV-1695-2020

RSCI SPIN-code 9284-3454



A. P. Kaplun
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Alexander P. Kaplun, Dr. Sci. (Chem.), Professor, N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies

86, Vernadskogo pr., Moscow, 119571

Scopus Author ID 7006433250

RSCI SPIN-code 5856-0218



References

1. Behn D., Weiss-Nowak C., Kalcklösch M., Westphal C., Gessner H., Kyriakopoulos A. Studies on the distribution and characteristics of new mammalian seleniumcontaining proteins. Analyst. 1995;120(3):823–825. https://doi.org/10.1039/an9952000823

2. Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med. 1993;14(3):313–323. https://doi.org/10.1016/0891-5849(93)90028-s

3. Drevko B.I., Antipov V.A., Zhukov O.I., et al. Means for the treatment and prevention of diseases caused by selenium deficiency in the body of farm animals and birds: RF Pat. 2051681. Publ. 10.01.1996. (in Russ.).

4. Usubova E.Z., Zhizhaev A.M., Mironov P.V. Effect of selenium on physiological parameters and efficiency of bean (Phaseolus vulgaris L.). Fundamental’nye issledovaniya = Fundamental Research. 2012;(3):257–260 (in Russ.).

5. Poluboyarinov P.A., Golubkina N.A. Investigation of the biochemical function of selenium and its influence on the content of protein fractions and peroxidase activity in maize seedlings. Russ. J. Plant Physiol. 2015;62(3):367–374. https://doi.org/10.1134/S1021443715030164

6. Castillo-Godina R.G., Foroughbakhch-Pournavab R., Benavides-Mendoza A. Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. J. Agr. Sci. Tech. 2016;18(1):233–244.

7. Huang C., Qin N., Sun L., Yu M., Hu W., Qi Z. Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. Int. J. Mol. Sci. 2018;19(7):1900–1913. https://doi.org/10.3390/ijms19071913

8. Bebien M., Lagniel G., Garin J., Touati D., Vermeglio A., Labarre J. Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. J. Bacteriol. 2002;184(6):1556–1564. https://doi.org/10.1128/jb.184.6.1556-1564.2002

9. Strogov V.V., Rodionova T.N. Influence of selenium on the functional state and economic parameters of honeybee colonies. Vestnik veterinarii. 2011;59(4):150–152 (in Russ.).

10. Wang H.W., Cai D.B., Xiao G.H., Zhao C.L., Wang Z.H., Xu H.M., Guan Y.Q. Effects of selenium on the activity of antioxidant enzymes in the shrimp, Neocaridina heteropoda. The Israeli Journal of Aquaculture – Bamidgeh. 2009;61(4):322–332.

11. Boryaev G.I., Gavryushina I.V., Fedorov Yu.N. Biochemical and physiological status of lambs in early postnatal ontogenesis against the background of selenium compounds injections to ewe in yean. Sel’skokhozyaistvennaya biologiya = Agricultural Biology. 2010;45 (2):65–70 (in Russ.).

12. Dzobo K., Naik Y.S. Effect of selenium on cadmiuminduced oxidative stress and esterase activity in rat organs. South Afr. J. Sci. 2013;109(5–6):1–8. https://doi.org/10.1590/sajs.2013/965

13. Xiao H., Parkin K.L. Induction of phase II enzyme activity by various selenium compounds. Nutr. Cancer. 2006;55(2):210–223. https://doi.org/10.1207/s15327914nc5502_13

14. Filov V.A. Bandman A.L. Volkova N.V. Grekhova T.D. Vrednye khimicheskie veshchestva. Neorganicheskie soedineniya elementov V–VIII grupp (Harmful Chemical Substances. Inorganic Compounds of Elements of V–VIII groups). Leningrad: Khimiya; 1989. P. 263–282 (in Russ.).

15. Avtsin A.P., Zhavoronkov A.A., Rish M.A., Strochkova L.S. Mikroelementozy cheloveka (Human Microelementoses). Moscow: Meditsina; 1991. P. 196–231 (in Russ.).

16. Sahu G.K., Upadhyay S., Sahoo B.B. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol. Mol. Biol. Plants. 2012;18(1):21–31. https://doi.org/10.1007/s12298-011-0090-6

17. Sofo A., Scopa A., Nuzzaci M., Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 2015;16(6):13561–13578. https://doi.org/10.3390/ijms160613561

18. Golyshin N.M. Fungitsidy ( Fungicides). Moscow: Kolos; 1993. 318 p. (in Russ.).

19. Yoshida M., Yokimoto M. Effects of fungicides on channels in the fungal membrane. Pesticide Biochemistry and Physiology. 1993;47(3):171–177. https://doi.org/10.1006/pest.1993.1076

20. Dudka I.A., Vasser S.P. Metody eksperimental’noi mikologii ( Experimental mycology methods). Kiev: Naukova Dumka; 1982. 550 р. (in Russ.).

21. Mineev V.G., Sychev V.G., Amel’yanchik O.A., Bolysheva T.N., Gomonova N.F., Durynina E.P., Egorov B.C., Egorova E.V., Edemskaya N.L., Karpova E.A., Prizhukova V.G. Praktikum po agrokhimii (Practical work on agrochemistry). Moscow: MGU; 2001. 689 p. (in Russ.).

22. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72(1–2):248–254. https://doi.org/10.1006/abio.1976.9999

23. Gavrilenko V.F., Ladygina M.E., Khandobina L.M. Bol’shoi praktikum po fiziologii rastenii. Fotosintez. Dykhanie (A Large Workshop on Plant Physiology. Photosynthesis. Breath). Moscow: Vysshaya shkola; 1975. 392 p. (in Russ.).

24. Nazarenko I.I., Ermakov A.N. Analiticheskaya khimiya selena i tellura (Analytical Chemistry of Selenium and Tellurium). Moscow: Nauka; 1971. 248 p. (in Russ.).

25. Ugai Ya.A. Neorganicheskaya khimiya ( Inorganic Chemistry). Moscow: Vysshaya shkola; 1989. 463 p. (in Russ.).

26. Bienert G.P., Cavez D., Besserer A., Berny M.C., Gilis D., Rooman M., Chaumont F. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers. Biochem. J. 2012;445(1):101–111. https://doi.org/10.1042/bj20111704

27. Frick A., Järvå M., Ekvall M., Uzdavinys P., Nyblom M., Törnroth-Horsefield S. Mercury increases water permeability of a plant aquaporin through a non-cysteinerelated mechanism. Biochem. J. 2013;454(3):491–499. https://doi.org/10.1042/bj20130377

28. Sadok W., Sinclair T.R. Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. J. Exp. Bot. 2010;61(3):821–829. https://doi.org/10.1093/jxb/erp350

29. Poluboyarinov P.A., Vikhreva V.A., Leshchenko P.P., Aripovsky A.N., Likhachev A.N. Formation of elementary selenium decay of molecules of selenium-organic preparation DAFS-25 under influence of growing micella of mushrooms. Vestnik Moskovskogo Universiteta. Seriya 16. Biologiya. 2009;16(4):33–37 (in Russ.).

30. Poluboyarinov P.A., Leshchenko P.P. A qualitative reaction for cysteine, reduced glutathione and diacetophenonyl selenide. J. Anal. Chem. 2013;68(11):949–952. https://doi.org/10.1134/S1061934813110105 [Original Russian Text: Poluboyarinov P.A., Leshchenko P.P. A qualitative reaction for cysteine, reduced glutathione and diacetophenonyl selenide. Zhurnal Analiticheskoi Khimii. 2013;68(11):1063–1066 (in Russ.). https://doi.org/10.7868/S0044450213110108 ]

31. Poluboyarinov P.A., Leshchenko P.P., Moiseeva I.Ya., Kolesnikova S.G., Epshtein N.B. Mechanism of the reaction of selenium elimination in diacetophenonyl selenide under the action of reduced glutathione. J. Anal. Сhem. 2017;72(7):739–744. https://doi.org/10.1134/S1061934817070103 [Original Russian Text: Poluboyarinov P.A., Leshchenko P.P., Moiseeva I.Ya., Kolesnikova S.G., Epshtein N.B. Mechanism of the reaction of selenium elimination in diacetophenonyl selenide under the action of reduced glutathione. Zhurnal Analiticheskoi Khimii. 2017;72(7):633–638 (in Russ.). https://doi.org/10.7868/S0044450217070118 ]

32. Busher J.T. Serum Albumin and Globulin. In: Walker H.K., Hall W.D., Hurst J.W. (Eds.). Clinical Methods: The History, Physical, and Laboratory Examinations: 3rd ed. Boston: Butterworths; 1990. Chapter 101. ISBN 978-0409900774.

33. Islam M.S., Berggren P.O., Larsson O. Sulfhydryl oxidation induces rapid and reversible closure of the ATP-regulated K+ channel in the pancreatic β-cell. FEBS Lett. 1993;319(1–2):128–132. https://doi.org/10.1016/0014-5793(93)80051-u

34. Poluboyarinov P.A., Elistratov D.G., Shvets V.I. Metabolism and mechanism of toxicity of seleniumcontaining drugs supplements used for optimizing human selenium status. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2019;14(1):5–24 (in Russ.). https://doi.org/10.32362/2410-6593-2019-14-1-5-24


Supplementary files

1. Maize roots with 100× magnification: tolylfluanide (0.16 mM/L).
Subject
Type Research Instrument
View (130KB)    
Indexing metadata ▾
  • Effect of selenium compounds on induction of peroxidase activity in maize tissues is analyzed.
  • Diacetophenonyl selenide reaction with thiol groups of maize tissues is accompanied by electrolytes leakage and albumin and total protein concentration increase.
  • Increase in protein concentration in plant tissues results in activation of peroxidase enzyme.

Review

For citations:


Poluboyarinov P.A., Shchetinina N.V., Moiseeva I.Ya., Mikulyak N.I., Golubkina N.A., Kaplun A.P. Thiol-dependent mechanisms of selenium-containing preparations and thiolylfluanide effect on electrolytes leaching and peroxidase activity in Zea mays L. Fine Chemical Technologies. 2022;17(5):394-409. https://doi.org/10.32362/2410-6593-2022-17-5-394-409

Views: 523


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)