Preview

Fine Chemical Technologies

Advanced search

Comparison of alternative methods for methyl acetate + methanol + acetic acid + acetic anhydride mixture separation

https://doi.org/10.32362/2410-6593-2019-14-5-51-60

Abstract

Objectives. The paper is a comparative analysis of methyl acetate + methanol + acetic acid + acetic anhydride industrial mixture separation flowsheets based on the use of special distillation methods (extractive distillation and pressure-swing distillation). The results obtained illustrate the variability of the structure of the technological separation flowsheet.

Methods. Mathematical modeling using the software package Aspen Plus V. 10.0 was chosen as the research method. The simulation was based on the local composition equation NRTL and the Hayden–O’Connell equation of state. The relative uncertainties of phase equilibrium description do not exceed 3%.

Results. The vapor–liquid diagram of the quaternary mixture of methyl acetate + methanol + acetic acid + acetic anhydride was studied using thermodynamic topological analysis. It was shown that the system contains one binary azeotrope and is characterized by one distillation region. Although the structure is not complex, there is a possibility of using several methods for mixture separation: pressure-swing distillation, and extractive distillation with different entrainers. Twelve flowsheets with different structure were proposed, and 29 variants of separation were compared.

Conclusions. It was shown that the most perspective structure for the separation of a methyl acetate + methanol + acetic acid + acetic anhydride mixture is a combination of distributed sequence separation and extractive distillation.

About the Authors

A. V. Frolkova
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Anastasiya V. Frolkova, Cand of Sci. (Engineering), Associate Professor, Chair of Chemistry and Technology of Basic Organic Synthesis

ResearcherID N-4517-2014

86, Vernadskogo pr., Moscow 119571, Russia


Competing Interests: The authors declare no conflict of interest.


Yu. I. Shashkova
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Yuliya I. Shashkova, Manager, Company СHIMMED

9, bild. 3, Kashirskoe shosse, Moscow 115230, Russia


Competing Interests: The authors declare no conflict of interest.


А. К. Frolkova
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Alla K. Frolkova, Dr. of Sci. (Engineering), Professor, Head of the Chair of Chemistry and Technology of Basic Organic Synthesis

ResearcherID G-7001-2018

86, Vernadskogo pr., Moscow 119571, Russia


Competing Interests: The authors declare no conflict of interest.


М. A. Mayevskiy
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Mark A. Maevskiy, Postgraduate Student, Chair of Chemistry and Technology of Basic Organic Synthesis

86, Vernadskogo pr., Moscow 119571, Russia


Competing Interests: The authors declare no conflict of interest.


References

1. Liang S., Cao Y., Liu X., Li X., Zhao Y., Wang Y., Wang Y. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chem. Eng. Res. Des. 2017;117:318-335. http://dx.doi.org/10.1016/j.cherd.2016.10.040

2. Gerbaud V., Rodriguez-donis I., Hegely L., Lang L., Denes F., Xinqiang Y. Review of extractive distillation. Process design, operation, optimization and control. Chem. Eng. Research & Design. 2019;141:229-271. http://dx.doi.org/10.1016/j.cherd.2018.09.020

3. Shen W., Benyounes H., Gerbaud V. Extractive distillation: Recent advances in operation strategies. Rev. Chem. Eng. 2014;31(1):13-26. http://dx.doi.org/10.1515/revce-2014-0031

4. Frolkova A.V., Merkulyeva A.D., Gaganov I.S Synthesis of flowsheets for separation of multiphase mixtures: State of the art. Tonkie khim. tekhnol. = Fine Chemical Technologie. 2018;13(3):5-22. https://doi.org/10.32362/24106593-2018-13-3-5-22

5. Abdallaha H., El-Gendia A., El-Zanatia E., Matsuurab T. Pervaporation of methanol from methylacetate mixture using polyamide-6 membrane. Desalination and Water Treatment. 2013;51(40-42):7807-7814. https://doi.org/10.1080/19443994.2013.775077

6. Frolkova A.K., Shashkova Y.I., Frolkova A.V. Separation of methylacetate + methanol + acetic acid + acetic anhydride using distillation methods. 45 th International Conference of the Slovak Society of Chemical Engineering. Tatranske. Maltiare, 2018; pp. 97-100.

7. Liu H.X., Wang N., Zhao C., Ji S., Li J.R. Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures — A review. Chin. J. Chem. Eng. 2017;26(1):1-16. http://dx.doi.org/10.1016/j.cjche.2017.03.006

8. Lux S., Winkler T., Siebenhofer M. Synthesis and isolation of methyl acetate through heterogeneous catalysis with liquid−liquid extraction. Ind. Eng. Chem. Res. 2010;49(21):10274-10278. http://dx.doi.org/10.1021/ie1005433

9. Samarov A., Smirnov M., Toikka A., Prikhodko I. Study of deep eutectic solvent on the base choline chloride as entrainer for the separation alcohol-ester systems. J. Chem. Eng. Data. 2018;63(6):1877-1884. http://dx.doi.org/10.1021/acs.jced.7b00912

10. Serafimov L.A. Thermodynamic and topological analysis of liquid–vapor phase equilibrium diagrams and problems of rectification of multicomponent mixtures. In: Mathematical Methods in Contemporary Chemistry. S.I. Kuchanov (Ed.) Amsterdam: Gordon and Breach Publ., 1996; pp. 557-605.

11. Benyounes H., Shen W.F., Gerbaud V. Entropy flow and energy efficiency analysis of extractive distillation with a heavy entrainer. Ind. Eng. Chem. Res. 2014;53:4778-4791. http://dx.doi.org/10.1021/ie402872n

12. Graczová E., Dobcsányi D., Steltenpohl P. Separation of methyl acetate–methanol azeotropic mixture using 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Chem. Eng. Trans. 2017;61:1183-1188. http://dx.doi.org/10.3303/CET1761195

13. Zhang Z., Hu A., Zhang T. Separation of methyl acetate + methanol azeotropic mixture using ionic liquids as entrainers. Fluid Phase Equilib. 2015;401:1-8. https://doi.org/10.1016/j.fluid.2015.04.018

14. Zhuchkov V., Frolkova A., Rum'yantsev P. Ionic liquids as separating agents in extractive rectification. Chem. Eng. Research & Design. 2015;99:215-219. http://dx.doi.org/10.1016/j.cherd.2015.06.004

15. Shen W., Benyounes H., Dong L., Wei S., Li J. Conceptual design of non-ideal mixtures separation with light entrainers. Braz. J. Chem. Eng. 2016;33:1041-1053. http://dx.doi.org/10.1590/0104-6632.20160334s20140169

16. Sazonova A., Raeva V., Frolkova A. Design of extractive distillation process with mixed entrainer. Chem. Papers. 2016;70(5):594-601. http://dx.doi.org/10.1515/chempap-2015-0247

17. Cardona C. Razrabotka reaktsionno-rektifikatsionnykh protsessov polucheniya alkilatsetatov eterifikatsiyey uksusnogo angidrida [Development of reactive distillation processes for the production of alkyl acetates by esterification of acetic anhydride]: Cand. of Sci. (Engineering) thesis. Moscow, 2001. 221 p. (in Russ.).

18. Fu H., Ying Y., Jiang. W. Vapor–liquid equilibria of formic acid–acetic acid–methyl acetate ternary system. J. Zhejiang Daxue Xuebao. 1987;21:52-57.

19. Sawistowski H., Pilavakis P.A. Vapor–liquid equilibrium with association in both phases. Multicomponent systems containing acetic acid. J. Chem. Eng. Data. 1982;27:64-71. http://dx.doi.org/10.1021/je00027a021

20. Ogorodnikov S.K., Lesteva T.M., Kogan V.B. Azeotropnye smesi [Azeotropic mixtures]. Leningrad: Khimiya Publ., 1971. 848 р. (in Russ.).

21. Renon H., Prausnitz J.M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14(1):135-144. https://doi.org/10.1002/aic.690140124

22. Hayden J.G., O’Connell J.P. A generalized method for predicting second virial coefficients. Ind. Eng. Chem. Process Des. Dev. 1975;14(3):209-216. https://doi.org/10.1021/i260055a003

23. Berg L., Yeh An-I. The separation of methyl acetate from methanol by extractive distillation. Chem. Eng. Commun. 1984;30:113-117. https://doi.org/10.1080/00986448408911119


Supplementary files

1. Fig. 6. Histogram showing the comparison of energy consumption in flowsheets based on the pressure-swing distillation.
Subject
Type Исследовательские инструменты
View (274KB)    
Indexing metadata ▾

Review

For citations:


Frolkova A.V., Shashkova Yu.I., Frolkova А.К., Mayevskiy М.A. Comparison of alternative methods for methyl acetate + methanol + acetic acid + acetic anhydride mixture separation. Fine Chemical Technologies. 2019;14(5):51-60. https://doi.org/10.32362/2410-6593-2019-14-5-51-60

Views: 1671


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)