Preview

Fine Chemical Technologies

Advanced search

Prediction of complex organic compounds activity with artificial neural networks.

Abstract

The analysis of neural networks applicability for complex organic compounds activity prediction is provided. The regulation algorithm is offered to improve the prediction properties of the networks.

About the Authors

E. V. Burljaeva
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


P. A. Ushakov
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


References

1. Поройков, В. В. Компьютерное предсказание биологической активности веществ: пределы возможного / В. В. Поройков // Химия в России. –1999. – № 2. – С. 8–12.

2. Crystal Structure at 3,5 Å Resolution of HIV-1 Reverse Transcriptase Complexed with an Inhibitor / L. A. Kohlstaedt [et al.] // Science. – 1992. –Vol. 256. – P.1783–1790.

3. The structure of HIV-1 reverse transcriptase complexed with 9-cloro-TIBO: lessons for inhibitor design / J. Ren [et al.] // Structure. – 1995. – Vol. 3. – P. 915–926.

4. Quantitative structure-activity relationships and comparative molecular field analysis of TIBO derivatised HIV-1 reverse transcriptase inhibitors / S. Hannongbua [et al.] // Journal of ComputerAided Molecular Design. – 1999. – № 13. – P. 563–577.

5. Eriksson, Mats A. L. Prediction of the Binding Free Energies of New TIBO-like HIV-1 Reverse Transcriptase Inhibitors Using a Combination of PROFEC, PB/SA, CMC/MD and Free Energy Calculations / Mats A. L. Eriksson, J. Pitera, P. Kollman // Journal of Medicinal Chemistry. – 1999. – Vol. 42, № 5. – P. 868–881.

6. Компьютерное моделирование противотуберкулезной активности производных дитиокарбаминовой кислоты / А. М. Юркевич, В. В. Бурляев, В. С. Боридко, С. В. Разливинская // Ученые зап. МИТХТ. – 2000. – Вып.1. – С. 39–42.

7. Баскин, И. И. Применение искусственных нейронных сетей в химических и биохимических исследованиях / И. И. Баскин, В. А. Палюлин, Н. С. Зефиров // Вестник Московского Университета. Химия. – 1999. – Т. 40, № 5. – С. 323–325.

8. The Use of Artificial Neural Networks in QSAR / D. W. Salt [et al.] // Pesticide Science. – 2002. – Vol. 32, № 1. – P. 161–170.

9. www.statsoft.ru

10. Marquardt, D. W. An algorithm for least-squares estimation of non-linear parameters / D. W. Marquardt // Journal of the Society of Industrial and Applied Mathematics. – 1997. – Vol. 11 (2). – P. 431–441.


Review

For citations:


Burljaeva E.V., Ushakov P.A. Prediction of complex organic compounds activity with artificial neural networks. Fine Chemical Technologies. 2008;3(4):79-83. (In Russ.)

Views: 303


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)